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Streaming Pixel Interface

In this section...
“What Is a Streaming Pixel Interface?” on page 1-2
“How Does a Streaming Pixel Interface Work?” on page 1-2
“Why Use a Streaming Pixel Interface?” on page 1-3
“Pixel Stream Conversion Using Blocks and System Objects” on page 1-4
“Timing Diagram of Serial Pixel Interface” on page 1-6

What Is a Streaming Pixel Interface?
In hardware, processing an entire frame of video at one time has a high cost in memory
and area. To save resources, serial processing is preferable in HDL designs. Vision HDL
Toolbox blocks and System objects operate on a pixel, line, or neighborhood rather than a
frame. The blocks and objects accept and generate video data as a serial stream of pixel
data and control signals. The control signals indicate the relative location of each pixel
within the image or video frame. The protocol mimics the timing of a video system,
including inactive intervals between frames. Each block or object operates without full
knowledge of the image format, and can tolerate imperfect timing of lines and frames.

How Does a Streaming Pixel Interface Work?
Video capture systems scan video signals from left to right and from top to bottom. As
these systems scan, they generate inactive intervals between lines and frames of active
video.

The horizontal blanking interval is made up of the inactive cycles between the end of one
line and the beginning of the next line. This interval is often split into two parts: the front
porch and the back porch. These terms come from the synchronize pulse between lines in
analog video waveforms. The front porch is the number of samples between the end of the
active line and the synchronize pulse. The back porch is the number of samples between
the synchronize pulse and the start of the active line.

The vertical blanking interval is made up of the inactive cycles between the ending active
line of one frame and the starting active line of the next frame.
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The scanning pattern requires start and end signals for both horizontal and vertical
directions. The Vision HDL Toolbox streaming pixel protocol includes the blanking
intervals, and allows you to configure the size of the active and inactive frame.

Why Use a Streaming Pixel Interface?
Format Independence

The blocks and objects using this interface do not need a configuration option for the
exact image size or the size of the inactive regions. In addition, if you change the image
format for your design, you do not need to update each block or object. Instead, update
the image parameters once at the serialization step. Some blocks and objects still require
a line buffer size parameter to allocate memory resources.

By isolating the image format details, you can develop a design using a small image for
faster simulation. Then once the design is correct, update to the actual image size.

 Streaming Pixel Interface
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Error Tolerance

Video can come from various sources such as cameras, tape storage, digital storage, or
switching and insertion gear. These sources can introduce timing problems. Human vision
cannot detect small variance in video signals, so the timing for a video system does not
need to be perfect. Therefore, video processing blocks must tolerate variable timing of
lines and frames.

By using a streaming pixel interface with control signals, each Vision HDL Toolbox block
or object starts computation on a fresh segment of pixels at the start-of-line or start-of-
frame signal. The computation occurs whether or not the block or object receives the end
signal for the previous segment.

The protocol tolerates minor timing errors. If the number of valid and invalid cycles
between start signals varies, the blocks or objects continue to operate correctly. Some
Vision HDL Toolbox blocks and objects require minimum horizontal blanking regions to
accommodate memory buffer operations.

Pixel Stream Conversion Using Blocks and System Objects
In Simulink®, use the Frame To Pixels block to convert framed video data to a stream of
pixels and control signals that conform to this protocol. The control signals are grouped in
a nonvirtual bus data type called pixelcontrol.

In MATLAB®, use the visionhdl.FrameToPixels object to convert framed video data
to a stream of pixels and control signals that conform to this protocol. The control signals
are grouped in a structure data type.

If your data is already in a serial format, design your own logic to generate these control
signals from your existing serial control scheme.

Supported Pixel Data Types

Vision HDL Toolbox blocks and objects include ports or arguments for streaming pixel
data. The blocks and objects capture one pixel at a time from the input, and produce one
pixel at a time for output. Each block and object supports one or more pixel formats. The
supported formats vary depending on the operation the block or object performs. This
table details common video formats supported by Vision HDL Toolbox.
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Type of Video Pixel Format
Binary Each pixel is represented by a single boolean or logical value. Used

for true black-and-white video.
Grayscale Each pixel is represented by luma, which is the gamma-corrected

luminance value. This pixel is a single unsigned integer or fixed-point
value.

Color Each pixel has multiple unsigned integer or fixed-point values
representing the color components of the pixel. Vision HDL Toolbox
blocks and objects use gamma-corrected color spaces, such as R'G'B'
and Y'CbCr.

Vision HDL Toolbox blocks have an input or output port, pixel, for the pixel data. Vision
HDL Toolbox System objects expect or return an argument to the step method
representing the pixel data. The following table describes the format of the pixel data.

Port or
Argument

Description Data Type

pixel Scalar that represents binary or grayscale
pixel value, or a vector of 2 to 4 values
representing a color pixel.

Supported data types can
include:

• boolean or logical
• uint or int
• fixdt()

double and single data types
are supported for simulation
but not for HDL code
generation.

Streaming Pixel Control Signals

Vision HDL Toolbox blocks and objects include ports or arguments for control signals
relating to each pixel. These five control signals indicate the validity of a pixel and its
location in the frame.

In Simulink, the control signal port is a nonvirtual bus data type called pixelcontrol.
For details of the bus data type, see “Pixel Control Bus” on page 1-8.
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In MATLAB, the control signal argument is a structure. For details of the structure data
type, see “Pixel Control Structure” on page 1-10.

Timing Diagram of Serial Pixel Interface
To illustrate the streaming pixel protocol, this example converts a frame to a sequence of
control and data signals. Consider a 2-by-3 pixel image. To model the blanking intervals,
configure the serialized image to include inactive pixels in these areas around the active
image:

• 1-pixel-wide back porch
• 2-pixel-wide front porch
• 1 line before the first active line
• 1 line after the last active line

You can configure the dimensions of the active and inactive regions with the Frame To
Pixels block or FrameToPixels object.

In the figure, the active image area is in the dashed rectangle, and the inactive pixels
surround it. The pixels are labeled with their grayscale values.

The block or object serializes the image from left to right, one line at a time. The timing
diagram shows the control signals and pixel data that correspond to this image. The
diagram shows the serial output of the Frame To Pixels block for this frame.

1 Streaming Pixel Interface
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For an example using the Frame to Pixels block to serialize an image, see “Design Video
Processing Algorithms for HDL in Simulink”.

For an example using the FrameToPixels object to serialize an image, see “Design a
Hardware-Targeted Image Filter in MATLAB”.

See Also
Frame To Pixels | Pixels To Frame | visionhdl.FrameToPixels |
visionhdl.PixelsToFrame
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Pixel Control Bus
Vision HDL Toolbox blocks use a nonvirtual bus data type, pixelcontrol, for control
signals associated with serial pixel data. The bus contains 5 boolean signals indicating
the validity of a pixel and its location within a frame. You can easily connect the data and
control output of one block to the input of another, because Vision HDL Toolbox blocks
use this bus for input and output. To convert an image into a pixel stream and a
pixelcontrol bus, use the Frame to Pixels block.

Signal Description Data Type
hStart true for the first pixel in a horizontal line of a

frame
boolean

hEnd true for the last pixel in a horizontal line of a
frame

boolean

vStart true for the first pixel in the first (top) line of
a frame

boolean

vEnd true for the last pixel in the last (bottom) line
of a frame

boolean

valid true for any valid pixel boolean

Troubleshooting: When you generate HDL code from a Simulink model that uses this
bus, you may need to declare an instance of pixelcontrol bus in the base workspace. If
you encounter the error Cannot resolve variable 'pixelcontrol' when you
generate HDL code in Simulink, use the pixelcontrolbus function to create an
instance of the bus type. Then try generating HDL code again.

To avoid this issue, the Vision HDL Toolbox model template includes this line in the
InitFcn callback.

evalin('base','pixelcontrolbus')

See Also
Frame To Pixels | Pixels To Frame | pixelcontrolbus
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More About
• “Streaming Pixel Interface” on page 1-2
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Pixel Control Structure
Vision HDL Toolbox System objects use a structure data type for control signals
associated with serial pixel data. The structure contains five logical signals indicating
the validity of a pixel and its location within a frame. You can easily connect the data and
control output of a step method to the input of another step method, because Vision
HDL Toolbox objects use this structure for input and output. To convert an image into a
pixel stream and control signals, use the FrameToPixels object.

Signal Description Data Type
hStart true for the first pixel in a horizontal line of a

frame
logical

hEnd true for the last pixel in a horizontal line of a
frame

logical

vStart true for the first pixel in the first (top) line of
a frame

logical

vEnd true for the last pixel in the last (bottom) line
of a frame

logical

valid true for any valid pixel logical

See Also
pixelcontrolsignals | pixelcontrolstruct | visionhdl.FrameToPixels |
visionhdl.PixelsToFrame

More About
• “Streaming Pixel Interface” on page 1-2
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Convert Camera Control Signals to pixelcontrol Format
This example converts Camera Link® signals to the pixelcontrol structure, inverts the
pixels with a Vision HDL Toolbox object, and converts the control signals back to the
Camera Link format.

Vision HDL Toolbox™ blocks and objects use a custom streaming video format. If your
system operates on streaming video data from a camera, you must convert the camera
control signals into this custom format. Alternatively, if you integrate Vision HDL Toolbox
algorithms into existing design and verification code that operates in the camera format,
you must also convert the output signals from the Vision HDL Toolbox design back to the
camera format.

You can generate HDL code from the three functions in this example.

Create Input Data in Camera Link Format

The Camera Link format consists of three control signals: F indicates the valid frame, L
indicates each valid line, and D indicates each valid pixel. For this example, create input
vectors in the Camera Link format to represent a basic padded video frame. The vectors
describe this 2-by-3, 8-bit grayscale frame. In the figure, the active image area is in the
dashed rectangle, and the inactive pixels surround it. The pixels are labeled with their
grayscale values.

F = logical([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]);
L = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
D = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
pixel = uint8([0,0,0,0,0,0,0,30,60,90,0,0,0,120,150,180,0,0,0,0,0,0,0,0]);

 Convert Camera Control Signals to pixelcontrol Format
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Design Vision HDL Toolbox Algorithm

Create a function to invert the image using Vision HDL Toolbox algorithms. The function
contains a System object that supports HDL code generation. This function expects and
returns a pixel and associated control signals in Vision HDL Toolbox format.

function [pixOut,ctrlOut] = InvertImage(pixIn,ctrlIn)
  
  persistent invertI;
  if isempty(invertI) 
      tabledata = linspace(255,0,256);
      invertI = visionhdl.LookupTable(uint8(tabledata));
  end
  
  % *Note:* This syntax runs only in R2016b or later. If you are using an 
  % earlier release, replace each call of an object with the equivalent |step|
  % syntax. For example, replace |myObject(x)| with |step(myObject,x)|.  
  [pixOut,ctrlOut] = invertI(pixIn,ctrlIn);
end

Convert Camera Link Control Signals to pixelcontrol Format

Write a custom System object to convert Camera Link signals to the Vision HDL Toolbox
control signal format. The object converts the control signals, and then calls the
pixelcontrolstruct function to create the structure expected by the Vision HDL
Toolbox System objects. This code snippet shows the logic to convert the signals.

  ctrl = pixelcontrolstruct(obj.hStartOutReg,obj.hEndOutReg,...
                       obj.vStartOutReg,obj.vEndOutReg,obj.validOutReg);

  vStart = obj.FReg && ~obj.FPrevReg;
  vEnd = ~F && obj.FReg;
  hStart = obj.LReg && ~obj.LPrevReg;
  hEnd = ~L && obj.LReg;

  obj.vStartOutReg = vStart;
  obj.vEndOutReg = vEnd;
  obj.hStartOutReg = hStart;
  obj.hEndOutReg = hEnd;
  obj.validOutReg = obj.DReg;

The object stores the input and output control signal values in registers. vStart goes
high for one cycle at the start of F. vEnd goes high for one cycle at the end of F. hStart
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and hEnd are derived similarly from L. The object returns the current value of ctrl each
time you call it.

This processing adds two cycles of delay to the control signals. The object passes through
the pixel value after matching delay cycles. For the complete code for the System object,
see CAMERALINKtoVHT_Adapter.m.

Convert pixelcontrol to Camera Link

Write a custom System object to convert Vision HDL Toolbox signals back to the Camera
Link format. The object calls the pixelcontrolsignals function to flatten the control
structure into its component signals. Then it computes the equivalent Camera Link
signals. This code snippet shows the logic to convert the signals.

  [hStart,hEnd,vStart,vEnd,valid] = pixelcontrolsignals(ctrl);

  Fnew = (~obj.FOutReg && vStart) || (obj.FPrevReg && ~obj.vEndReg);
  Lnew = (~obj.LOutReg && hStart) || (obj.LPrevReg && ~obj.hEndReg);

  obj.FOutReg = Fnew;
  obj.LOutReg = Lnew;
  obj.DOutReg = valid;

The object stores the input and output control signal values in registers. F is high from
vStart to vEnd. L is high from hStart to hEnd. The object returns the current values of
FOutReg, LOutReg, and DOutReg each time you call it.

This processing adds one cycle of delay to the control signals. The object passes through
the pixel value after a matching delay cycle. For the complete code for the System object,
see VHTtoCAMERALINKAdapter.m.

Create Conversion Functions That Support HDL Code Generation

Wrap the converter System objects in functions, similar to InvertImage, so you can
generate HDL code for these algorithms.

function [ctrl,pixelOut] = CameraLinkToVisionHDL(F,L,D,pixel)
% CameraLink2VisionHDL : converts one cycle of CameraLink control signals 
% to Vision HDL format, using a custom System object.
% Introduces two cycles of delay to both ctrl signals and pixel data.

persistent CL2VHT;
  if isempty(CL2VHT)

 Convert Camera Control Signals to pixelcontrol Format
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      CL2VHT = CAMERALINKtoVHT_Adapter();
  end
  
  [ctrl,pixelOut] = CL2VHT(F,L,D,pixel);

See CameraLinkToVisionHDL.m, and VisionHDLToCameraLink.m.

Write a Test Bench

To invert a Camera Link pixel stream using these components, write a test bench script
that:

1 Preallocates output vectors to reduce simulation time
2 Converts the Camera Link control signals for each pixel to the Vision HDL Toolbox

format
3 Calls the Invert function to flip each pixel value
4 Converts the control signals for that pixel back to the Camera Link format

[~,numPixelsPerFrame] = size(pixel);
pixOut = zeros(numPixelsPerFrame,1,'uint8');
pixel_d = zeros(numPixelsPerFrame,1,'uint8');
pixOut_d = zeros(numPixelsPerFrame,1,'uint8');
DOut = false(numPixelsPerFrame,1);
FOut = false(numPixelsPerFrame,1);
LOut = false(numPixelsPerFrame,1);
ctrl = repmat(pixelcontrolstruct,numPixelsPerFrame,1);
ctrlOut = repmat(pixelcontrolstruct,numPixelsPerFrame,1);

for p = 1:numPixelsPerFrame
  [pixel_d(p),ctrl(p)] = CameraLinkToVisionHDL(pixel(p),F(p),L(p),D(p));
  [pixOut(p),ctrlOut(p)] = Invert(pixel_d(p),ctrl(p));
  [pixOut_d(p),FOut(p),LOut(p),DOut(p)] = VisionHDLToCameraLink(pixOut(p),ctrlOut(p));
end

View Results

The resulting vectors represent this inverted 2-by-3, 8-bit grayscale frame. In the figure,
the active image area is in the dashed rectangle, and the inactive pixels surround it. The
pixels are labeled with their grayscale values.
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If you have a DSP System Toolbox™ license, you can view the vectors as signals over time
using the Logic Analyzer. This waveform shows the pixelcontrol and Camera Link
control signals, the starting pixel values, and the delayed pixel values after each
operation.

 Convert Camera Control Signals to pixelcontrol Format
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See Also
pixelcontrolsignals | pixelcontrolstruct

More About
• “Streaming Pixel Interface” on page 1-2
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Integrate Vision HDL Blocks Into Camera Link System
This example shows how to design a Vision HDL Toolbox algorithm for integration into an
existing system that uses the Camera Link® signal protocol.

Vision HDL Toolbox™ blocks use a custom streaming video format. If you integrate Vision
HDL Toolbox algorithms into existing design and verification code that operates in a
different streaming video format, you must convert the control signals at the boundaries.
The example uses custom System objects to convert the control signals between the
Camera Link format and the Vision HDL Toolbox pixelcontrol format. The model
imports the System objects to Simulink® by using the MATLAB System block.

Structure of the Model

This model imports pixel data and control signals in the Camera Link format from the
MATLAB® workspace. The CameraLink_InvertImage subsystem is designed for
integration into existing systems that use Camera Link protocol. The
CameraLink_InvertImage subsystem converts the control signals from the Camera
Link format to the pixelcontrol format, modifies the pixel data using the Lookup Table
block, and then converts the control signals back to the Camera Link format. The model
exports the resulting data and control signals to workspace variables.

Structure of the Subsystem

The CameraLink2VHT and VHT2CameraLink blocks are MATLAB System blocks that
point to custom System objects. The objects convert between Camera Link signals and the
pixelcontrol format used by Vision HDL Toolbox blocks and objects.

You can put any combination of Vision HDL Toolbox blocks into the middle of the
subsystem. This example uses an inversion Lookup Table.

 Integrate Vision HDL Blocks Into Camera Link System
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You can generate HDL from this subsystem.

Import Data in Camera Link Format

Camera Link consists of three control signals: F indicates the valid frame, L indicates
each valid line, and D indicates each valid pixel. For this example, the input data and
control signals are defined in the InitFcn callback. The vectors describe this 2-by-3, 8-
bit grayscale frame. In the figure, the active image area is in the dashed rectangle, and
the inactive pixels surround it. The pixels are labeled with their grayscale values.

  FIn = logical([0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]);
  LIn = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
  DIn = logical([0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0]);
  pixIn = uint8([0,0,0,0,0,0,0,30,60,90,0,0,0,120,150,180,0,0,0,0,0,0,0,0]);
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Convert Camera Link Control Signals to pixelcontrol Format

Write a custom System object to convert Camera Link signals to the Vision HDL Toolbox
format. This example uses the object designed in the “Convert Camera Control Signals to
pixelcontrol Format” on page 1-11 example.

The object converts the control signals, and then creates a structure that contains the
new control signals. When the object is included in a MATLAB System block, the block
translates this structure into the bus format expected by Vision HDL Toolbox blocks. For
the complete code for the System object, see CAMERALINKtoVHT_Adapter.m.

Create a MATLAB System block and point it to the System object.

Design Vision HDL Toolbox Algorithm

Select Vision HDL Toolbox blocks to process the video stream. These blocks accept and
return a scalar pixel value and a pixelcontrol bus that contains the associated control
signals. This standard interface makes it easy to connect blocks from the Vision HDL
Toolbox libraries together.

This example uses the Lookup Table block to invert each pixel in the test image. Set the
table data to the reverse of the uint8 grayscale color space.

 Integrate Vision HDL Blocks Into Camera Link System
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Convert pixelcontrol to Camera Link

Write a custom System object to convert Vision HDL Toolbox signals back to the Camera
Link format. This example uses the object designed in the “Convert Camera Control
Signals to pixelcontrol Format” on page 1-11 example.

The object accepts a structure of control signals. When you include the object in a
MATLAB System block, the block translates the input pixelcontrol bus into this
structure. Then it computes the equivalent Camera Link signals. For the complete code
for the System object, see VHTtoCAMERALINKAdapter.m.

Create a second MATLAB System block and point it to the System object.

View Results

Run the simulation. The resulting vectors represent this inverted 2-by-3, 8-bit grayscale
frame. In the figure, the active image area is in the dashed rectangle, and the inactive
pixels surround it. The pixels are labeled with their grayscale values.
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If you have a DSP System Toolbox™ license, you can view the signals over time using the
Logic Analyzer. Select all the signals in the CameraLink_InvertImage subsystem for
streaming, and open the Logic Analyzer. This waveform shows the input and output
Camera Link control signals and pixel values at the top, and the input and output of the
Lookup Table block in pixelcontrol format at the bottom. The pixelcontrol busses
are expanded to observe the boolean control signals.

 Integrate Vision HDL Blocks Into Camera Link System
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For more info on observing waveforms in Simulink, see “Inspect and Measure Transitions
Using the Logic Analyzer” (DSP System Toolbox).

Generate HDL Code for Subsystem

To generate HDL code you must have an HDL Coder™ license.

To generate the HDL code, use the following command.

  makehdl('CameraLinkAdapterEx/CameraLink_InvertImage')

1 Streaming Pixel Interface
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You can now simulate and synthesize these HDL files along with your existing Camera
Link system.

See Also

More About
• “Streaming Pixel Interface” on page 1-2
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Edge Padding
To perform a kernel-based operation such as filtering on a pixel at the edge of a frame,
Vision HDL Toolbox algorithms pad the edges of the frame with extra pixels. These
padding pixels are used for internal calculation only. The output frame has the same
dimensions as the input frame. The padding operation assigns a pattern of pixel values to
the inactive pixels around a frame. Vision HDL Toolbox algorithms provide padding by
constant value, replication, or symmetry. Some blocks and System objects enable you to
select from these padding methods.

The diagrams show the top-left corner of a frame, with padding added to accommodate a
5 × 5 filter kernel. When computing the filtered value for the top-left active pixel, the
algorithm requires two rows and two columns of padding. The edge of the active image is
indicated by the double line.

• Constant — Each added pixel is assigned the same value. On some blocks and
System objects you can specify the constant value. The value 0, representing black, is
a reserved value in some video standards. It is common to choose a small number,
such as 16, as a near-black padding value.

In the diagram, C represents the constant value assigned to the inactive pixels around
the active frame.
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• Replicate — The pixel values at the edge of the active frame are repeated to make
rows and columns of padding pixels.

The diagram shows the pattern of replicated values assigned to the inactive pixels
around the active frame.

• Symmetric — The padding pixels are added such that they mirror the edge of the
image.

The diagram shows the pattern of symmetric values assigned to the inactive pixels
around the active frame. The pixel values are symmetric about the edge of the image
in both dimensions.
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Padding requires minimum horizontal and vertical blanking periods. This interval gives
the algorithm time to add and store the extra pixels. The blanking period, or inactive pixel
region, must be at least kernel size pixels in each dimension.

See Also
Image Filter | visionhdl.ImageFilter

More About
• “Streaming Pixel Interface” on page 1-2
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Accelerate a MATLAB Design With MATLAB Coder
Vision HDL Toolbox designs in MATLAB must call the step method of one or more
System objects for every pixel. This serial processing is efficient in hardware, but is slow
in simulation. One way to accelerate simulations of these objects is to simulate using
generated C code rather than the MATLAB interpreted language.

Code generation accelerates simulation by locking down the sizes and data types of
variables inside the function. This process removes the overhead of the interpreted
language checking for size and data type in every line of code. You can compile a video
processing algorithm and test bench into MEX functions, and use the resulting MEX file
to speed up the simulation.

To generate C code, you must have a MATLAB Coder™ license.

See “Accelerate a Pixel-Streaming Design Using MATLAB Coder”.
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HDL Code Generation from Vision HDL Toolbox
In this section...
“What Is HDL Code Generation?” on page 4-2
“HDL Code Generation Support in Vision HDL Toolbox” on page 4-2
“Streaming Pixel Interface in HDL” on page 4-2

What Is HDL Code Generation?
You can use MATLAB and Simulink for rapid prototyping of hardware designs. Vision HDL
Toolbox blocks and System objects, when used with HDL Coder™, provide support for
HDL code generation. HDL Coder tools generate target-independent synthesizable
Verilog® and VHDL® code for FPGA programming or ASIC prototyping and design.

HDL Code Generation Support in Vision HDL Toolbox
Most blocks and objects in Vision HDL Toolbox support HDL code generation.

The following blocks and objects are for simulation only and are not supported for HDL
code generation :

• Frame To Pixels (visionhdl.FrameToPixels)
• Pixels To Frame (visionhdl.PixelsToFrame)
• FIL Frame To Pixels (visionhdl.FILFrameToPixels)
• FIL Pixels To Frame (visionhdl.FILPixelsToFrame)
• Measure Timing (visionhdl.MeasureTiming)

Streaming Pixel Interface in HDL
The streaming pixel bus and structure data type used by Vision HDL Toolbox blocks and
System objects is flattened into separate signals in HDL.

In VHDL, the interface is declared as:

  PORT( clk             :   IN    std_logic;
        reset           :   IN    std_logic;
        enb             :   IN    std_logic;

4 Prototyping

4-2



        in0             :   IN    std_logic_vector(7 DOWNTO 0); -- uint8
        in1_hStart      :   IN    std_logic;
        in1_hEnd        :   IN    std_logic;
        in1_vStart      :   IN    std_logic;
        in1_vEnd        :   IN    std_logic;
        in1_valid       :   IN    std_logic;
        out0            :   OUT   std_logic_vector(7 DOWNTO 0); -- uint8
        out1_hStart     :   OUT   std_logic;
        out1_hEnd       :   OUT   std_logic;
        out1_vStart     :   OUT   std_logic;
        out1_vEnd       :   OUT   std_logic;
        out1_valid      :   OUT   std_logic
        );

In Verilog, the interface is declared as:

  input   clk;
  input   reset;
  input   enb;
  input   [7:0] in0;  // uint8
  input   in1_hStart;
  input   in1_hEnd;
  input   in1_vStart;
  input   in1_vEnd;
  input   in1_valid;
  output  [7:0] out0;  // uint8
  output  out1_hStart;
  output  out1_hEnd;
  output  out1_vStart;
  output  out1_vEnd;
  output  out1_valid;

 HDL Code Generation from Vision HDL Toolbox
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Blocks and System Objects Supporting HDL Code
Generation

Most blocks and objects in Vision HDL Toolbox are supported for HDL code generation.
For exceptions, see “HDL Code Generation Support in Vision HDL Toolbox” on page 4-2.
This page helps you find blocks and objects supported for HDL code generation in other
MathWorks® products.

Blocks
In the Simulink library browser, you can find libraries of blocks supported for HDL code
generation in the HDL Coder, Communications Toolbox HDL Support, and DSP
System Toolbox HDL Support block libraries.

To create a library of HDL-supported blocks from all your installed products, enter
hdllib at the MATLAB command line. This command requires an HDL Coder license.

Refer to the “Supported Blocks” (HDL Coder) pages for block implementations,
properties, and restrictions for HDL code generation.

System Objects
To find System objects supported for HDL code generation, see Predefined System
Objects (HDL Coder).
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Generate HDL Code From Simulink

Introduction
This page shows you how to generate HDL code from the design described in “Design
Video Processing Algorithms for HDL in Simulink”. You can generate HDL code from the
HDL Algorithm subsystem in the model.

To generate HDL code, you must have an HDL Coder license.

Prepare Model
Run hdlsetup to configure the model for HDL code generation. If you started your
design using the Vision HDL Toolbox Simulink model template, your model is already
configured for HDL code generation.

Generate HDL Code
Right-click the HDL Algorithm block, and select HDL Code > Generate HDL from
subsystem to generate HDL using the default settings. The output log of this operation is
shown in the MATLAB Command Window, along with the location of the generated files.

To change code generation options, use the HDL Code Generation section of Simulink
Configuration Parameters. For guidance through the HDL code generation process, or to
select a target device or synthesis tool, right-click on the HDL Algorithm block, and select
HDL Code > HDL Workflow Advisor.

Alternatively, from the MATLAB Command Window, you can call:

makehdl([modelname '/HDL Algorithm'])

Generate HDL Test Bench
You can select options to generate a test bench in Simulink Configuration Parameters or
in HDL Workflow Advisor.

Alternatively, to generate an HDL test bench from the command line, call:

makehdltb([modelname '/HDL Algorithm'])
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See Also
Functions
makehdl | makehdltb

Related Examples
• “HDL Code Generation and FPGA Synthesis Using Simulink HDL Workflow Advisor”

(HDL Coder)
• “Choose a Test Bench for Generated HDL Code” (HDL Coder)
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Generate HDL Code From MATLAB
This example show you how to generate HDL code from the design in “Design a
Hardware-Targeted Image Filter in MATLAB”.

To generate HDL code, you must have an HDL Coder license.

Create an HDL Coder Project
Copy the relevant files to a temporary folder.

functionName = 'HDLTargetedDesign';
tbName = 'VisionHDLMATLABTutorialExample';
vhtExampleDir = fullfile(matlabroot,'examples','visionhdl');
workDir = [tempdir 'vht_matlabhdl_ex'];

cd(tempdir)
[~, ~, ~] = rmdir(workDir, 's');
mkdir(workDir)
cd(workDir)

copyfile(fullfile(vhtExampleDir, [functionName,'.m*']), workDir)
copyfile(fullfile(vhtExampleDir, [tbName,'.m*']), workDir)

Open the HDL Coder app and create a new project.

coder -hdlcoder -new vht_matlabhdl_ex

In the HDL Code Generation pane, add the function file HDLTargetedDesign.m and
the test bench file VisionHDLMATLABTutorialExample.m to the project.

Click next to the signal names under MATLAB Function to define the data types for the
input and output signals of the function. The control signals are logical scalars. The
pixel data type is uint8. The pixel input is a scalar.

Generate HDL Code
1 Click Workflow Advisor to open the advisor.
2 Click HDL Code Generation to view the HDL code generation options.
3 On the Target tab, set Language to Verilog or VHDL.
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4 Also on the Target tab, select Generate HDL and Generate HDL test bench.
5 On the Coding Style tab, select Include MATLAB source code as comments and

Generate report to generate a code generation report with comments and
traceability links.

6 Click Run to generate the HDL design and the test bench with reports.

Examine the log window and click the links to view the generated code and the reports.

See Also

Related Examples
• “” (HDL Coder)
• “” (HDL Coder)
• “HDL Code Generation for System Objects” (HDL Coder)
• “Pixel-Streaming Design in MATLAB”
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HDL Cosimulation
HDL cosimulation links an HDL simulator with MATLAB or Simulink. This communication
link enables integrated verification of the HDL implementation against the design. To
perform this integration, you need an HDL Verifier™ license. HDL Verifier cosimulation
tools enable you to:

• Use MATLAB or Simulink to create test signals and software test benches for HDL
code

• Use MATLAB or Simulink to provide a behavioral model for an HDL simulation
• Use MATLAB analysis and visualization capabilities for real-time insight into an HDL

implementation
• Use Simulink to translate legacy HDL descriptions into system-level views

See Also

More About
• “HDL Cosimulation” (HDL Verifier)
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FPGA-in-the-Loop
FPGA-in-the-loop (FIL) enables you to run a Simulink or MATLAB simulation that is
synchronized with an HDL design running on an FPGA board. This link between the
simulator and the board enables you to verify HDL implementations directly against
Simulink or MATLAB algorithms. You can apply real-world data and test scenarios from
these algorithms to the HDL design that is running on the FPGA.

In Simulink, you can use the FIL Frame To Pixels and FIL Pixels To Frame blocks to
accelerate communication between Simulink and the FPGA board. In MATLAB, you can
modify the generated code to speed up communication with the FPGA board.

FPGA-in-the-Loop Simulation with Vision HDL Toolbox Blocks
This example shows how to modify the generated FPGA-in-the-loop (FIL) model for more
efficient simulation of the Vision HDL Toolbox™ streaming video protocol.

Autogenerated FIL Model

When you generate a programming file for a FIL target in Simulink, the HDL Workflow
Advisor creates a model to compare the FIL simulation with your Simulink design. For
details of how to generate FIL artifacts for a Simulink model, see “FIL Simulation with
HDL Workflow Advisor for Simulink” (HDL Verifier).

For Vision HDL Toolbox designs, the FIL block in the generated model replicates the
pixel-streaming interface and sends one pixel at a time to the FPGA. The model shown
was generated from the example model in “Design Video Processing Algorithms for HDL
in Simulink”.
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The top part of the model replicates your Simulink design. The generated FIL block at the
bottom communicates with the FPGA. ToFILSrc subsystem copies the pixel-stream input
of the HDL Algorithm block to the FromFILSrc subsystem. The ToFILSink subsystem
copies the pixel-stream output of the HDL Algorithm block into the Compare subsystem,
where it is compared with the output of the HDL Algorithm_fil block. For image and video
processing, this setup is slow because the model sends only a single pixel, and its
associated control signals, in each packet to and from the FPGA board.

Modified FIL Model for Pixel Streaming

To improve the communication bandwidth with the FPGA board, you can use the
generated FIL block with vector input rather than streaming. This example includes a
model, FILSimulinkWithVHTExample.slx, created by modifying the generated FIL model.
The modified model uses the FIL Frame To Pixels and FIL Pixels To Frame blocks to send
one frame at a time to the generated FIL block. You cannot run this model as is. You must
generate your own FIL block and bitstream file that use your board and connection
settings.
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To convert from the generated model to the modified model:

1 Remove the ToFILSrc, FromFILSrc, ToFILSink, and Compare subsystems, and create
a branch at the frame input of the Frame To Pixels block.

2 Insert the FIL Frame To Pixels block before the HDL Algorithm_fil block. Insert the
FIL Pixels To Frame block after the HDL Algorithm_fil block.

3 Branch the frame output of the Pixels To Frame block for comparison. You can
compare the entire frame at once with a Diff block. Compare the validOut signals
using an XOR block.

4 In the FIL Frame To Pixels and FIL Pixels To Frame blocks, set the Video format
parameter to match the video format of the Frame To Pixels and Pixels To Frame
blocks.

5 Set the Vector size in the FIL Frame To Pixels and FIL Pixels To Frame blocks to
Frame or Line. The size of the FIL Frame To Pixels vector output must match the
size of the FIL Pixels To Frame vector input. The vector size of the FIL block
interfaces does not modify the generated HDL code. It affects only the packet size of
the communication between the simulator and the FPGA board.

The modified model sends an entire frame to the FPGA board in each packet, significantly
improving the efficiency of the communication link.

FPGA-in-the-Loop Simulation with Vision HDL Toolbox System
Objects
This example shows how to modify the generated FPGA-in-the-loop (FIL) script for more
efficient simulation of the Vision HDL Toolbox™ streaming video protocol. For details of
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how to generate FIL artifacts for a MATLAB® System object™, see “FIL Simulation with
HDL Workflow Advisor for MATLAB” (HDL Verifier).

Autogenerated FIL Function

When you generate a programming file for a FIL target in MATLAB, the HDL Workflow
Advisor creates a test bench to compare the FIL simulation with your MATLAB design.
For Vision HDL Toolbox designs, the DUTname_fil function in the test bench replicates
the pixel-streaming interface and sends one pixel at a time to the FPGA. DUTname is the
name of the function that you generated HDL code from.

This code snippet is from the generated test bench TBname_fil.m, generated from the
example script in “Pixel-Streaming Design in MATLAB”. The code calls the generated 
DUTname_fil function once for each pixel in a frame.

for p = 1:numPixPerFrm
    [pixOutVec( p ),ctrlOutVec( p )] = PixelStreamingDesignHDLDesign_fil( pixInVec( p ), ctrlInVec( p ) );
end

The generated DUTname_fil function calls your HDL-targeted function. It also calls the 
DUTname_sysobj_fil function, which contains a System object that connects to the
FPGA. DUTname_fil compares the output of the two functions to verify that the FPGA
implementation matches the original MATLAB results. This snippet is from the file 
DUTname_fil.m.

% Call the original MATLAB function to get reference signal
[ref_pixOut,tmp_ctrlOut] = PixelStreamingDesignHDLDesign(pixIn,ctrlIn);

  ...

% Run FPGA-in-the-Loop
[pixOut,ctrlOut_hStart,ctrlOut_hEnd,ctrlOut_vStart,ctrlOut_vEnd,ctrlOut_valid] ...
  = PixelStreamingDesignHDLDesign_sysobj_fil(pixIn,ctrlIn_hStart,ctrlIn_hEnd,ctrlIn_vStart,ctrlIn_vEnd,ctrlIn_valid);

  ...

% Verify the FPGA-in-the-Loop output
hdlverifier.assert(pixOut,ref_pixOut,'pixOut');

For image and video processing, this setup is slow because the function sends only one
pixel, and its associated control signals, in each packet to and from the FPGA board.

Modified FIL Test Bench for Pixel Streaming

To improve the communication bandwidth with the FPGA board, you can modify the
autogenerated test bench, TBname_fil.m. The modified test bench calls the FIL System
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object directly, with one frame at a time. These snippets are from the
PixelStreamingDesignHDLTestBench_fil_frame.m script, modified from FIL artifacts
generated from the example script in “Pixel-Streaming Design in MATLAB”. You cannot
run this script as is. You must generate your own FIL System object, function, and
bitstream file that use your board and connection settings. Then, either modify your
version of the generated test bench, or modify this script to use your generated FIL
object.

Declare an instance of the generated FIL System object.

fil = class_PixelStreamingDesignHDLDesign_sysobj;

Comment out the loop over the pixels in the frame.

%         for p = 1:numPixPerFrm
%            [pixOutVec( p ),ctrlOutVec( p )] = PixelStreamingDesignHDLDesign_fil( pixInVec( p ), ctrlInVec( p ) );
%         end

Replace the commented loop with the code below. Call the step method of the fil object
with vectors containing the whole frame of data pixels and control signals. Pass each
control signal to the object separately, as a vector of logical values. Then, recombine the
control signal vectors into a vector of structures.

[pixOutVec,hStartOut,hEndOut,vStartOut,vEndOut,validOut] = ...
    step(fil,pixInVec,[ctrlInVec.hStart]',[ctrlInVec.hEnd]',[ctrlInVec.vStart]',[ctrlInVec.vEnd]',[ctrlInVec.valid]');
ctrlOutVec = arrayfun(@(hStart,hEnd,vStart,vEnd,valid) ...
    struct('hStart',hStart,'hEnd',hEnd,'vStart',vStart,'vEnd',vEnd,'valid',valid),...
    hStartOut,hEndOut,vStartOut,vEndOut,validOut);     

These code changes remove the pixel-by-pixel verification of the FIL results against the
MATLAB results. Optionally, you can add a pixel loop to call the reference function, and a
frame-by-frame comparison of the results. However, calling the original function for a
reference slows down the simulation.

for p = 1:numPixPerFrm
     [ref_pixOutVec(p),ref_ctrlOutVec(p)] = PixelStreamingDesignHDLDesign(pixInVec(p),ctrlInVec(p));
end

After the call to the fil object, compare the output vectors.

hdlverifier.assert(pixOutVec',ref_pixOutVec,'pixOut')
hdlverifier.assert([ctrlOutVec.hStart],[ref_ctrlOutVec.hStart],'hStart')
hdlverifier.assert([ctrlOutVec.hEnd],[ref_ctrlOutVec.hEnd],'hEnd')
hdlverifier.assert([ctrlOutVec.vStart],[ref_ctrlOutVec.vStart],'vStart')
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hdlverifier.assert([ctrlOutVec.vEnd],[ref_ctrlOutVec.vEnd],'vEnc')
hdlverifier.assert([ctrlOutVec.valid],[ref_ctrlOutVec.valid],'valid')

This modified test bench sends an entire frame to the FPGA board in each packet,
significantly improving the efficiency of the communication link.

See Also
Blocks
FIL Frame To Pixels | FIL Pixels To Frame | Image Filter

System Objects
visionhdl.ImageFilter

More About
• “FPGA Verification” (HDL Verifier)
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Prototype Vision Algorithms on Zynq-Based Hardware
You can use the Computer Vision Toolbox™ Support Package for Xilinx® Zynq-Based
Hardware to prototype your vision algorithms on Zynq-based hardware that is connected
to real input and output video devices. Use the support package to:

• Capture input or output video from the board and import it into Simulink for algorithm
development and verification.

• Generate and deploy vision IP cores to the FPGA on the board. (requires HDL Coder)
• Generate and deploy C code to the ARM® processor on the board. You can route the

video data from the FPGA into the ARM® processor to develop video processing
algorithms targeted to the ARM processor. (requires Embedded Coder®)

• View the output of your algorithm on an HDMI device.

Video Capture
Using this support package, you can capture live video from your Zynq device and import
it into Simulink. The video source can be an HDMI video input to the board, an on-chip
test pattern generator included with the reference design, or the output of your custom
algorithm on the board. You can select the color space and resolution of the input frames.
The capture resolution must match that of your input camera.

Once you have video frames in Simulink, you can:

• Design frame-based video processing algorithms that operate on the live data input.
Use blocks from the Computer Vision Toolbox libraries to quickly develop frame-based,
floating-point algorithms.

• Use the Frame To Pixels block from Vision HDL Toolbox to convert the input to a pixel
stream. Design and verify pixel-streaming algorithms using other blocks from the
Vision HDL Toolbox libraries.

Reference Design
The Computer Vision Toolbox Support Package for Xilinx Zynq-Based Hardware provides
a reference design for prototyping video algorithms on the Zynq boards.

When you generate an HDL IP core for your pixel-streaming design using HDL Workflow
Advisor, the core is included in this reference design as the FPGA user logic section.
Points A and B in the diagram show the options for capturing video into Simulink.
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The FPGA user logic can also contain an optional interface to external frame buffer
memory, which is not shown in the diagram.

Note The reference design on the Zynq device requires the same video resolution and
color format for the entire data path. The resolution you select must match that of your
camera input. The design you target to the user logic section of the FPGA must not
modify the frame size or color space of the video stream.

Deployment and Generated Models
By running all or part of your pixel-streaming design on the hardware, you speed up
simulation of your video processing system and can verify its behavior on real hardware.
To generate HDL code and deploy your design to the FPGA, you must have HDL Coder
and the HDL Coder Support Package for Xilinx Zynq Platform, as well as Xilinx Vivado®

and the Xilinx SDK.

After FPGA targeting, you can capture the live output frames from the FPGA user logic
back to Simulink for further processing and analysis. You can also view the output on an
HDMI output connected to your board. Using the generated hardware interface model,
you can control the video capture options and read and write AXI-Lite ports on the FPGA
user logic from Simulink during simulation.
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The FPGA targeting step also generates a software interface model. This model supports
software targeting to the Zynq hardware, including external mode, processor-in-the-loop,
and full deployment. It provides data path control, and an interface to any AXI-Lite ports
you defined on your FPGA targeted subsystem. From this model, you can generate ARM
code that drives or responds to the AXI-Lite ports on the FPGA user logic. You can then
deploy the code on the board to run along with the FPGA user logic. To deploy software to
the ARM processor, you must have Embedded Coder and the Embedded Coder Support
Package for Xilinx Zynq Platform.

See Also

More About
• “Computer Vision Toolbox Support Package for Xilinx Zynq-Based Hardware”
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Construct a Filter Using Line Buffer
This example shows how to use the Line Buffer block to extract neighborhoods from an
image for further processing. The model constructs a separable Gaussian filter.

Inside the HDL Algorithm subsystem, the Line Buffer block is configured for a 5-by-5
neighborhood. The output is a 5-by-1 column vector. The Gain and Sum blocks implement
separate horizontal and vertical components of a 5-by-5 Gaussian filter with a 0.75
standard deviation. After vertical filtering, the model stores the column sums in a shift
register that creates a 1-by-5 row vector. The row values are filtered again to calculate
the new central pixel value of each neighborhood.
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You can generate HDL code from the HDL Algorithm subsystem. You must have the HDL
Coder™ software installed to run this command.

makehdl('SeparableFilterSimpleHDL/HDL Algorithm')

To generate an HDL test bench, use this command.

makehdltb('SeparableFilterSimpleHDL/HDL Algorithm')

See Also
Blocks
Frame To Pixels

System Objects
visionhdl.LineBuffer

 See Also
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Convert RGB Image to YCbCr 4:2:2 Color Space
This example shows how to convert a pixel stream from R'G'B' color space to Y'CbCr 4:2:2
color space.

The model imports a 480p RGB image, then the Frame to Pixels block converts it to a
pixel stream. Inside the HDL Algorithm subsystem, the Color Space Converter and
Chroma Resampler blocks convert the pixel stream to YCbCr 4:2:2 format.

The waveform of the input and output pixel stream of the Chroma Resampler block shows
the downsampling of the CbCr component values. The latency of the Chroma Resampler
block depends on the size of the antialiasing filter. This example uses the default filter,
which has 29 taps.
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To check and generate the HDL code referenced in this example, you must have an HDL
Coder™ license.

To generate the HDL code, use the following command.

makehdl('ChromaResampleExample/HDL Algorithm')

To generate the test bench, use the following command. Note that test bench generation
takes a long time due to the large data size. Consider reducing the simulation time before
generating the test bench.

makehdltb('ChromaResampleExample/HDL Algorithm')

The part of the model between the Frame to Pixels and Pixels to Frame blocks can be
implemented on an FPGA.

See Also
Blocks
Chroma Resampler | Color Space Converter | Frame To Pixels

 See Also

5-5



Compute Negative Image
This example creates the negative of an image by looking up the opposite pixel values in a
table.

For a hardware-compatible design, the model converts the input video to a stream of pixel
values. The Frame to Pixels and Pixels to Frame blocks are configured to match the
format of the video source.

The Pixel-Stream Lookup Table subsystem contains a Lookup Table block, configured with
inversion data. The input pixel data is uint8 type, so the negative value is 255 - pixel,
or linspace(255,0,256). The output pixel data type is the same as the data type of the
table contents, in this case, uint8.

To generate and check the HDL code referenced in this example, you must have an HDL
Coder™ license.

To generate the HDL code, use the following command:

makehdl('LookupTableHDL/Pixel-Stream Lookup Table')

To infer a RAM to implement the lookup table, the LUTRegisterResetType property is
set to none. To access this property, right-click the Lookup Table block inside the
subsystem, and navigate to HDL Coder > HDL Block Properties.

To generate a test bench for the generated HDL code, use the following command:
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makehdltb('LookupTableHDL/Pixel-Stream Lookup Table')

See Also
Blocks
Frame To Pixels | Lookup Table

 See Also
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